Vulnerability - Engineering Anne Kiremidjian Stanford University

WORKSHOP FOR A CROSS-DISCIPLINARY PROGRAM FOR DISASTER RESILIENCE, VULNERABILITY AND RISK REDUCTION

JUNE 1-3, 2011 WASHINGTON, DC

• Present the engineering perspective on interdisciplinary research in disaster vulnerability

Outline

- State of science
- Research opportunities
- Limitations

• New definitions of vulnerability

• Vulnerability = non-performance levels

- Example: immediate occupancy performance level implies that structure should have only cosmetic damage and will have all lifeline functionality available to it
- This definition requires a systems approach to vulnerability definition!

State of the Science

- Advanced vulnerability assessment methods relate to performance levels – PBEE - <u>earthquake primarily</u>
 - Building structural system
 - Non-structural components
 - o Contents
 - o Lifeline systems
 - Transportation
 - ▼ Water/sewer
 - × Power
 - Communications
 - × Gas

- Primary current focus

Performance models in their infancy

Research Opportunities

- Bring performance modeling for other hazards in line with earthquake performance definitions
- Multi-hazard performance evaluations this should be within the context of the digital city concept
 - E.g. hurricane wind force, storm surge and flood levels
 - E.g. earthquake and tsunami plus technological hazards earthquake of March 11, 2011 in Tohoku, Japan
- Define performance levels within the context of <u>social and</u> <u>economic requirements</u> for functionality and resiliency
- Building and other structure specific models need for better understanding of structural response such as the behavior of materials when subjected to extreme loads

Research Opportunities

- Study and develop methods for evaluating and modeling
 - o Interaction/dependence between
 - Structure vulnerability correlation of similar structures
 - × Lifeline systems
 - Social components
 - Economic components
- Time-dependent modeling consideration of aging and deterioration in performance assessment as well as population and infrastructure growth
- Consider life-cycle issues and sustainability reusable/new materials that are also hazard resistant

Research Opportunities – cont'd

- Need for technologies that connect vulnerability models with regional risk assessment – high data, high computation
- Need for multi-scale models that go across the structural, social and economic components these are typically data intensive, and computationally very intensive

• Data and other information collection:

- Single structure instrumentation for
 - ▼ Performance assessment - pre- and post event evaluation
 - Design development
 - Instrumentation that integrates structural performance, energy consumption and environmental conditions
- Regional data collection
 - × Inventory compilation for all hazards
 - Develop technologies for automated inventory compilation
 - Technologies for continuous updating such as direct link to building permitting process and visualization tools (e.g. google earth, remote sensing, video cameras, etc.)
 - Post-event regional damage evaluation methods using remote sensing

Research Opportunities – cont'd

• Develop new materials and systems for

- New structures
- Retrofit purposes
- Rapid reconstruction

Include social and economic implications in the design of these materials

- Special designs for evacuations & temporary housing
 - o Address individual hazards hurricane, tornado, floods, tsunamis
 - Identify common themes
 - Include the following in evacuation strategies
 - Multicultural social environments
 - ▼ Economic conditions government and individual correlate to social status
- Relationship between vulnerability and resiliency of a region
- Need for demonstration projects similar to the southern California earthquake scenario – for other hazards and for multiple hazards

Constraints

- Very limited funding
- Limited communication between the fields engineering, social and economic sciences
- Lack of appreciation of the cross-disciplinary issues by all the fields